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Abstract—The closed-form solutions to the compressive stiffness of elastic layers bonded between
rigid plates are derived through theoretical analyses for the layers of infinite-strip, circular and
square shapes. Based on the two kinematics assumptions, the governing equations for the mean
pressure are established from the equilibrium equations and the bulk modulus equation. Satisfying
the stress boundary conditions, the pressure functions are solved and the formulae for the com-
pressive stiffness are derived. The compressive stiffnesses calculated from these formulae are
extremely close to the results obtained from the finite element method for an extensive range of
shape factor and Poisson’s ratio. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

When an elastic layer is bonded between two rigid plates, the restricted lateral expansion
on the bonded surfaces of the elastic layer causes a higher compression stiffness than the
unbonded elastic layer in the direction normal to the layer. The effect becomes quite
dramatic for an incompressible material. This mechanical characteristic has been adopted
in the design of multilayered rubber bearings which are employed in many fields, e.g.
thermal expansion bearings for highway bridges and isolation bearings to reduce buildings’
Seismic response.

By using approximate theoretical analyses, Gent and Lindley (1959) derived the com-
pressive stiffness of incompressible elastic layers for infinite-strip shape and circular shape.
Gent and Meinecke (1970) extended this analysis to the layers of square and other shapes.
These approximate analyses are based on two kinematics assumptions and one stress
assumption. They are (i) planes parallel to the rigid bounding plates remain plane and
parallel; (ii) lines normal to the rigid bounding plates before deformation become parabolic
after loading; (iii) the normal stress components in all three directions can be approximated
by the mean pressure.

Although rubber can be treated as incompressible in some analyses, the assumption
of incompressibility tends to overestimate the compressive stiffness of the bonded rubber
layer when the layer’s shape factor, defined as the ratio of the one bonded area to the force-
free area, is high. Kelly (1993) developed a theoretical approach to derive the compressive
stiffness considering the bulk compressibility’s effect. Based on the above three assumptions,
the relation between mean pressure and volume strain is reduced to a partial differential
equation of the pressure, from which the compressive stiffnesses including the influence of
volume change are derived. The solutions are available for the layers of infinite-strip shape
(Chalhoub and Kely, 1991), circular shape (Chalhoub and Kelly, 1990) and square shape
(Kelly, 1993). These solutions are accurate for the layers of high shape factor and the
material of Poisson’s ratio between 0.49 and 0.5, e.g. rubber, which is called an “‘approxi-
mate pressure’ solution here.

In addition to the aforementioned two kinematic assumptions, Lindley (1979) pos-
tulated that the volume strain has a parabolic distribution across the layer’s plane. He
applied an energy method to derive the compressive stiffnesses of the infinite-strip and
circular shapes which are accurate for the material of lower Poisson’s ratios.
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Koh and Kelly (1989) utilized only the first two kinematic assumptions without the
third stress assumption to derive the compressive stiffness for the square layer of com-
pressible material by a ““variable transform” approach. They also indicated that the para-
bolic deformation shape is indeed a realistic assumption.

In this paper, we derive the compressive stiffnesses of infinite-strip, circular and square
shapes by theoretical analyses which are similar to the approach for the “approximate
pressure” solution, but rely on the only two kinematic assumptions: horizontal planes
remain plane and vertical lines become parabolic after loading. Partial differential equations
of the pressure are initially derived from the equilibrium equations and the bulk modulus
equation. Satisfying the stress boundary conditions of layers, the pressure functions are
then solved, from which the compressive stiffnesses are derived. The derived compressive
stiffnesses are compared with the results of finite element analysis to verify that the solutions
are available for any value of Poisson’s ratio.

2. GOVERNING EQUATIONS

Figure 1 indicates a layer of linearly elastic material is bonded between two rigid plates.
The elastic layer is homogeneous and isotropic and has a thickness 7 and an area 4. A
rectangular Cartesian coordinate system (x, y, z) is established by locating the origin at the
center of the layer and the x—y plane in the middle plane of the layer. Denote u, v and w be
the displacements in the x, y and z coordinate directions, respectively. The layer’s top and
bottom surfaces are perfectly bonded to rigid plates so that u=v =0 at z = ¢/2 and
z = — /2. Under direct compression in the z direction, the layer is deformed as shown in
Fig. 2 and the displacements are assumed to have the form

4z*
u(x, y,z) = a(x, y) (1 - t—2> (1)

4 2
v(x,y,z) = d(x,y) (1 — tiz) @)
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Fig. 1. Elastic layer bonded between rigid plates.
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Fig. 2. Deformed shape of a compressed layer.
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w(x,p,z) = w(2) 3
Equations (1) and (2) satisfy the assumption that the vertical lines become parabolic; eqn
(3) represents the assumption that horizontal planes remain plane.

For isotropic elastic material, the mean pressure p has the following relation with
displacements

P(X, Y, Z) = - K(uu’ + v, + w',x) (4)

where x denotes the bulk modulus and the commas imply partial differentiation with respect
to the indicated coordinate. Applying the following stress expressions

A
Oy = — ;p+ 2.u‘u,x (5)

A
o, = — Ep+2,uv,y (6)

in which 4 and y represent Lame’s constants, the equilibrium equations in the x and y
coordinate directions become

Adpu
U Tyt = u—KP,x N
and
At pu
Uex + U,y + V.= Wp,y (8)

Differentiating eqns (7) and (8) with respect to x and y, respectively, and adding them up
yield

At
(u,x + U.y),xx + (u,x + U,y),yy + (u.x + v,y),zz = —EC— (p,xx +p,yy) (9)

Substituting the displacement assumptions in eqns (1) to (3) into eqn (4) and inte-
grating the resulting equation through the thickness produce

3 1
i, +0, =-{e——p 10
TR w
where j denotes the effective pressure defined as
1 /2
p(x.7) =;J p(x.y.2)dz ()

and ¢, represents the effective compression strain defined as

g = —lt[w G>~w(—éﬂ (12)

Similarly, after integrating through the layer’s thickness, eqn (9) becomes
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b

8 A+
SO0t @) )= S @t 8) = (Pt D) (3)

The governing equation for the effective pressure is obtained by substituting eqn (10) into
eqn (13),

PactP,—207p = —2a’ke, (14)

Y £2(+2u) (13)

Equation (14) is solved by satisfying the boundary conditions that the stresses are free on
the unbonded surface of the elastic layer. In the “approximate pressure” solution, the
differential equation is similar to eqn (14), but the coefficient « is different ; the boundary
conditions are assumed as j(x, y) = 0 on the stress-free surfaces.

The compressive stiffness of the layer is determined by the effective compression
modulus defined as

in which o is defined as

—j g, dxdy
A

= (16)

In the above equation, the numerator represents the total applied compression force and
.. is the effective vertical stress defined as

1 12
.. = _j Oz dz (17)

t —1/2
By using the following stress expression for the vertical stress,
A
O = = _p+2uw, (13)

the effective compression modulus becomes

A
= 7] 1
E . =2u+ dre Lpdxdy 19

C

3. LAYER OF INFINITE-STRIP SHAPE

Figure 3 depicts an infinite-strip layer of width 25 and thickness r. If the y coordinate
direction is attached to the infinite-long side, the displacement component v vanishes, so
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Fig. 3. Dimensions of an infinite-strip layer.
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that the elastic layer is in plane strain state parallel to the xz plane. The governing equation
for the effective pressure in eqn (14) becomes

ﬁ.xx _O_‘ZP_ = - &ZKSC (20)
in which

12

g= |—F @1
12 (A+2p)
Since v, = 0, combining eqns (4) and (5) leads to
A+2

G =~ T p 2y, (22)

By integrating the above equation through the thickness, the boundary condition o, = 0
at x = b yields

oy 2
pb) =~ EPLL (23)

By satisfying the above boundary condition, eqn (20) is solved as
. A \cosh(@x)
pe) = ke, [1 - (ﬂ. + 2u> cosh(o‘cb):l @4

By substituting the above equation into eqn (19), the effective compression modulus for
the infinite-strip layer is derived as

ﬂ J \tanh(ab)

The shape factor of the infinite-strip layer is defined as

(26)

According to eqn (21),

3u
ih =28, | —— 27
@b = 28, T+ 27
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Therefore, F. defined in eqn (25) is a multiple of Young’s modulus E and is a function of
Poisson’s ratio v and shape factor S;. The variations of E/E with v for §;= 2 and S, = 20
are plotted in Fig. 4 and compared with the results computed by the finite element method.
In the finite element solution, the infinite-strip layer is modeled by 8-node isoparametric
plane-strain elements. According to this figure, the compressive modulus in eqn (25) is
almost the same as the finite element solution.

The formula derived by Lindley (1979) for the compressive modulus of infinite-strip
layer can be expressed as

Poisson's ratio v/

0.0 0.45 0.495 0.4995 0.49995 0.499995
10.0 1 1 | J
|
|
w
= /4
8 — /
/
. Equation (25)
— V
s — — — - Chalhoub and Kelly (1991)
7
2 Lindley (1979)
-
o Finite Element
10 L L L L AL T O O A
0.0 1.0 20 3.0 40 50
log[1/(1-2v)]
(a) Si=2
Poisson's ratio v
0.0 0.45 0.495 0.4995 0.49995 0.499995
1000.0 ! 1 i !
=
1000 —]
w Z
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w —
100 — Equation (25)
3 P — — — Chalhoub and Kelly (1991)
] & e Lindley (1979)
Lo o Finite Element
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log{1/(1-21)]
(b) Si=20

Fig. 4. Effective compression modulus of infinite-strip layer.
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[ 2

(ab)*
2u+i|1 L 1 l(‘b)2+Lf f ib < 3.24
U+ 4 P —3oc 1 17_b2 or &b < 3.
E, =< + 75(@0) (28)
. 3 0.972 _

This formula is similar to eqn (25) except for the function &b. For smaller value of &b,

tanh (b)
&b

u

1 2 2 4
~1—3(ab) +15(ocb) ~ 375

(ab)° (29)

For larger value of @b, tanh(@b) ~ 1. Therefore, eqn (28) is very close to eqn (25). This can
be proved by the curves of the two equations plotted in Fig. 4. However, the expression in
eqn (25) is more compact that eqn (28).

The “approximate pressure’ solution derived by Chalhoub and Kelly (1991) is

tanh(gb
Ec=3u+x[1_1w_)}

ab (30)

with

ib = 25, /37? 31)

As shown in Fig. 4, the “approximate pressure” solution is accurate only in the case of
high shape factor and near incompressibility.

In the layer’s material is nearly incompressible, v ~ 0.5, the magnitude of A becomes
infinite and # is infinitesimal. Substituting the following approximation

‘a—n%'—‘b)m—%fbul—msff—z—# (32)
into eqn (25) yields
L el D R 2 33)
At2u o (A+2p)°
The asymptotic solution of E, for the infinite 4 is
E, = 4u(1+S87) (34)

which is the effective compression modulus for incompressible material and is the same as
the result reported by Gent and Lindiey (1959).
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4. LAYER OF CIRCULAR SHAPE

The circular layer shown in Fig. 5 has a radius of » and a thickness of 7. A cylindrical
polar coordinate system (r, 0, z) is established with the origin at the center of the layer. The
elastic layer is in the axisymmetric stress state so that the displacement in the 6 direction
vanishes. The displacement in the r direction, denoted as u, and the displacement in the z
direction, denoted as w, are assumed as

4 2
u(r,z) = a(r) (1 - —Zz—) (35)
I3
w(r,z) = w(z) (36)
The mean pressure becomes
u
pr,z) = —k (u,-i— - + w’z> 37
By applying the following stress expressions,
A
G = = p+2u, (38)
A u
Op = — —p+2u— (39
K s
the equilibrium equation in the r direction becomes
At+2
u,z: - W,rz = + #pr (40)

UK

Substituting the displacement assumptions in egns (35) and (36) into eqns (37) and (40)
and integrating the resulting equations through the thickness leads to

NP NHi

Fig. 5. Dimensions of a circular layer.
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+22e 25 41
bt LT 9% T 0 1)
and

_ A2

u‘“s K p‘r (42)

The governing equation for the effective pressure, which may be derived by combining eqns
(41) and (42) or taking coordinate transformation from eqn (14), is

p = —a’kKe, (43)

where # is defined in eqn (21).
By substituting eqn (35) into eqn (38) and integrating the resulting equation through
the thickness, the boundary condition o,, = 0 at r = b yields

4ux

p6) = 57 0,(6) )

By combining the above equation with eqns (41) and (42), the boundary condition for the
effective pressure becomes

1 6
G2~ )+ 8 xe =0 (43)

By satisfying the above boundary condition, eqn (43) is solved as

ab (1 — —;—(o'zt)z)
pr)=xe | 1= I, (ar) (46)
&bl,(ab) — g(o'ct)zll (ab)

where I, and I, denote the modified Bessel functions of the first kind of order 0 and order
1, respectively. The effective compression modulus for the circular layer is obtained by
substituting eqn (46) into eqn (19)

12
E =2+42u— a2 )ofblo(o'cb)_ 47
TR
The shape factor of the circular layer is
b
= 8
Se=5, 48)

Therefore,
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W = 45, | K
=45, |75 (49)

Figure 6 plots the effective compression modulus calculated by eqn (47) and the formulae
published previously with respect to v for S, = 2 and S, = 20. Also plotted in the figure is
the finite element solutions where the circular layer is modeled by 8-node isoparametric
elements of axisymmetry. The figure depicts that the compressive modulus calculated by
eqn (47), the finite element method and the formula of Lindley (1979) are nearly the same

Poisson's ratio v

0.0 0.45 0.495 0.4995 0.49995 0.499995
10.0 l - I L
.
-
w
3 -
w
_J Equation (47)
— — — - Chalhoub and Kelly (1980}
------- Lindley (1979)
V
@  Finite Element
10 TIFII[IT"IIIIITI!]]TIlTF[IIIII
0.0 1.0 20 3.0 4.0 50
log[1/(1-2V)]
(a) Sc=2
Poisson's ratio 1/
0.0 0.45 0.495 0.4995 0.49995 0.499995
1000.0 1 l 1 !
100.0 —
w 7
S ]
m —_
10.0 Equation (47)
E_ ¥, — — — - Chalhoub & Kelly (1990)
] 4 > Lindley (1879)
P -
L - % @ Finite Element
10 LA T O O B B
0.0 1.0 20 3.0 4.0 50
log[1/(1-21)]
(b) Sc=20

Fig. 6. Effective compression modulus of circular layer.
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for any value of Poisson’s ratio ; the “approximate pressure” solution (Chalhoub and Kelly,
1990) loses accuracy when v < 0.45.

When the layer’s material is nearly incompressible, &b tends to infinitesimal and the
following function of @b in eqn (47) may be approximated by

abl, (@b) 1o i
e a4 - = 14+682———
Ay S g = 1+6Si o (50)

Consequently, the effective compression modulus for incompressible material becomes
E. =3u(1+252%) (51)
which is the same as the results reported by Gent and Lindley (1959).

5. LAYER OF SQUARE SHAPE

The square layer depicted in Fig. 7 has a side length of 2b and a thickness of ¢. Because
of the square layer’s symmetry around the x axis, the y axis and the diagonals of the square,
the effective pressure has the following properties

p(x,y) = p(—x,y) = p(x, =) (52)
and
p(x,y) = p(y,x) (53)
The horizontal displacements possess the relation
a(x,y) = 0(y,2) (54
which implies
a,(x,y) =7,(y,%) (5%)

Substituting eqns (1) and (2) into eqns (5) and (6), respectively, and integrating the
resulting equations through the thickness, the boundary condition ¢, = 0 at x = b yields

z
/Y
/'J =
7~ _L/_/_ /| Y,
e - A

Fig. 7. Dimensions of a square layer.
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_ dpx _
P(b,y) = —:(b,y) (56)
34
and o,, = 0 at y = b provides
4
P06, b) = 5, (x, b) (57)
31
Similarly, 7,, = 0 at x = b gives
a4,(b,y)+0.(b,y) =0 (58)

By combining eqns (10), (56) and (57), the effective pressure on the corner is found as

UK
Atu

b(b,b) = & (59)

According to the governing equation in eqn (14), the particular solution for j is
Pp = K& (60)

The complementary solution, denoted as pj,, is solved by the method of separation of
variables. By setting p.(x,y) = X(x) ¥(y), the functions X and Y are derived from the
following equation

=C (61)

where C represents a constant. Denote o, j, and p_ are the solutions of g, when C = 0,
C > 0 and C < 0, respectively. The complete solution for 5 becomes

P(x,y) = Pp(x, )+ Do (x, ) + P+ (X, ) +P_ (%, )) (62)
The following conditions are set on the corners
pe(b,by=p_(b,b)=0 (63)
which implies, based on eqns (59) and (60), that

_ AK
Do(b,b) = — P (64)

The function ge(x, y) is solved by satisfying the conditions in eqns (52) and (64)

Ax cosh(ax) cosh(ay)
po(x, ) = — = & 65
Pox7) Atp cosh?(ab) (63)

To satisfy eqns (52) and (63), g, and p_ have the expressions
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Priy) = 3 Aycosh(B,x) cos(rny) (66)
P-(53) = 3. B,c0s(1,) cosh(f,) 67
with
_@n—-D)m _
=Ty m=12.. 0 (68)
and

B = /207 +7; (69)

where A4, and B, are the constants to be determined. The condition in eqn (53) gives 4, = B,.
Therefore, the effective pressure has the following expression

5(x,y) = Ke, [1 s A cosh(ax) cosh(o:y)]

+4  cosh?(ab)

+3 Ayfcosh(B,x) cos(y,y) +cos(r,x) cosh(,1)]  (70)

By substituting the above equation into eqn (19), the effective compression modulus
becomes

A? tanh?(ab)

E. = A+2u —_—
S Atu (ab)? "

> a, (71

I

with

i, sinb(8,b)sin(y,b)
ek " (B.b)(b)

(72)

a, =

To find A, or a,, substitute the expression of j(b,y) obtained from eqn (70) into eqn
(56) to obtain @ (b, y). Then, applying eqn (55) yields

i A, cosh(B,b) cos(y,y)

5 (v b) = 34 cosh(ay) 34 cosh(ocy)
b =g, Cl: —COSh(cxb)] 4G+’ cosh(ocb)

(73)

In addition, substituting the expressions of g(b, y) and @ (b, y) into eqn (10) leads to

5 (b v) = 34 cosh(ay) ) 34 cosh(ay)
/(b.y) = u8° |:cosh(ocb) - 4(A+ ) be cosh(ab)

(;K 32 ) 2 A, cosh(B,b) cos(y,y) (74)

Equations (73) and (74) indicate
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5 ( )*E’ai _cosh(ocx) cosh(ay) 32 cosh(ax) cosh(ay)
T 40" | T cosh(ob) T cosh(ab) [T 40+ cosh? (wb)

+3 4, [ cos(y,x) cosh(B,) — (3 +4—3l—1—)cosh</3 %) cos(m)] (75)

The expressions for #(x, y) and o(x, y) can be derived by integrating the above equation
and satisfying the condition #(0, 0) = 0 and the symmetric relation in eqn (54). The derived
expressions of #(x, y) and #(x, y) must satisfy the condition in eqn (58), thereby yielding

Z A (va B\ 2pB.]|[sinh(B,y) sin(y,y)] . .
LA [LE (EZ * 7")* p yn] [sinh(&b) * sin(nb)]smh(ﬁ"b ) singab)

A ) sinh(ay)
~a

24 A
=& I:(m tanh(ab) - b m — ;(Oty) tanh(ab)] (76)

Multiplying the both sides of eqns (76) by sin(y,,»} and taking the integration from
y = —btoy=bproduce

i = m=1,2,...,0 77)
in which

Do =10t b7+ (1425)8, 78
| { (Gnd)* + (B, b) ] tanh(Byb) (728) (B,b)* (78)

with
S N 79
e {07 m#n ( )

and
2 ( a—bb >2 2u tanh(ab) 1 _ tanh(ab) 1 30)

A.+,u ab ab 2 ab B ab 2
N et 1+ (=
Ymb Vmb

In eqn (77), if a finite upper bound of m and n, say k, replaces the infinity, eqn (77)

can be replaced by a matrix form
Da=d (81)
where D denotes a k£ x k matrix formed by the elements D,,,; a and d are the k-dimensional
vectors formed by the components a, and d,,, respectively. Approx1mated values of a, can

be solved from eqn (81).
The shape factor of the bonded square layer is defined as

According to eqn (15),
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Poisson's ratio v
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------- k=1 Ss=20 oo
0890 4 _ _ _ . k= Ss=5
5 - =+ k=2 8s=20
0.985 ITII(|l||l|[|ll||]|l||l|||l|i
0.0 1.0 20 3.0 4.0 50

log[1/(1-21)]
Fig. 8. Convergence of solution to the compression modulus of square layer.

6u

=285,
b ‘N A+2u

(83)

Let E¥ denote the value of E, in eqn (71), including the first k& terms of a,. The ratio of
E®/E is a function of v and S,. Figure 8 plots the ratios of E{P/ES® and E@/ES? for the
varied v and two different S; values. This figure reveals that the difference ratio between
EM and EC? is smaller than 0.015, which indicates that we can employ only the first term
of a, to obtain an extremely good approximation of E,. The explicit form of E{" is derived
from eqns (81) and (71)

1 tanh®(ab)

Lo (ab)?
A

EM =2u+i|1—
1+

2i(ab)? {1 + tan:;“b) [1 - fi‘ + iz(ab)z]}
T
- g (84)

nz 2 ﬁlb u T # 2
[—4— + (ab)’ + w_—tanh(ﬁlb)] |:<1 + z)z‘ + (1 +21>(ocb) ]

The values of the effective compression modulus calculated from eqn (84) are compared
with the results computed by the finite element method in Fig. 9. In the finite element
analysis, the square layer is modeled by 8-node solid elements with incompatible bending
modes. The figure shows that the compressive modulus in eqn (84) is extremely close to the
finite element solutions for any value of Poisson’s ratio. The figure also plots the curves
calculated by the methods published before, indicating that the “approximate pressure”
solution (Kelly, 1993) loses accuracy when v < 0.45.

When the layer’s material is nearly incompressible, the magnitude of 4 becomes infinite
and « is infinitesimal. Applying the following approximation
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Poisson's ratio »
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Fig. 9. Effective compression modulus of square layer.

tanh(ab) 1 5
—p = 1— 3 (ab) (85)

in eqn (84), the effective compression modulus for incompressible material is found
EM =3u(142.2325%) (86)

If the fifty terms of a, are considered in eqn (71), the effective compression modulus for
incompressible material becomes
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ESY = 3u(1+2.2498%) (87)

which is extremely close to the results published previously (Gent and Meinecke, 1970;
Kelly, 1993).

6. CONCLUSION

Based on the two kinematics assumptions, i.e. horizontal planes remain plane and
vertical lines become parabolic after deformation, the closed-form solutions to the com-
pressive stiffness of elastic layers bonded between rigid plates are derived through theoretical
approach for the layers of infinite-strip, circular and square shapes. The compressive
stiffnesses calculated by the derived formulae are rather close to the solutions of the finite
element analysis for a variety of shape factors and Poisson’s ratios. This finding suggests
that the two kinematics assumptions are realistic.

For the layers of infinite-strip and circular shapes, the compressive stiffnesses calculated
by the derived formulae are the same as the values of Lindley (1979), although the formulae
have different forms, revealing that the assumption on volume strain made by Lindley
(1979) is exact, but unnecessary.

The major difference between the approach proposed herein and the method of the
“approximate pressure” solution is that the latter method assumed the normal stress
components to be approximated by the mean pressure. Without any stress assumption in
the present approach, the governing equations of mean pressure are derived from the exact
equilibrium equations and the solution of mean pressure are solved by satisfying the exact
boundary conditions. The compressive stiffness solved by the present approach is very close
to the “approximate pressure” solution when Poisson’s ratio is greater than 0.45, but
becomes smaller than the “approximate pressure’ solution for lower Poisson’s ratios.
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